State of Neighborhood Services and Conditions

Indicators of school performance and public safety continued to improve in New York City. Meanwhile, the share of commuters using transit increased citywide, as did the share of bicycle commuters.

1. Elementary and Middle Schools and Student Performance
 A) Proficiency rates in both math and English language arts improved in public elementary and middle schools between 2013 and 2014. Starting in the 2012-2013 school year, New York State administered new annual exams designed to assess third through eighth graders’ performance according to the new Common Core Learning Standards. Compared to tests administered the previous year, markedly fewer students scored proficient or above on the new tests. However, students’ test scores improved in every borough between the first and second years in which the Common Core-based exams were administered.

 Figures 6.1 and 6.2 show the percentage of students in grades three through eight scoring at or above a proficient level in math and English language arts, respectively, in the school years ending in 2013 and 2014. Students in Queens were more likely to perform at grade level in math than students in any other borough, with 42 percent scoring at or above proficient, while Manhattan had highest percentage performing at grade level in English language arts (34.8%). Students in Staten Island showed the greatest gains between 2013 and 2014 in math proficiency, while those in Brooklyn improved the most in English language arts. Students in the Bronx were less likely than those in other boroughs to perform at grade level in both subjects, and they made the smallest gains between 2013 and 2014.

 B) There was significant variation in math and English language arts proficiency across school districts.

 Figure 6.3 shows the variation in math proficiency rates across districts, and Figure 6.4 shows proficiency rates in English language arts. A majority of students performed at grade level in math in only four of New York City’s 32 districts: district 2 in Manhattan (Financial District/Midtown/Upper East Side), district 20 in Brooklyn (Bay Ridge/Borough Park/West Bensonhurst), and districts 25 and 26 in Queens (Flushing/Whitestone/Kew Gardens Hills and Fresh Meadows/Bayside/Bellerose). Only in districts 2 and 26 did a majority of students score at or above proficient in English in 2014. Fewer than one in five students performed at grade level in math in eastern Brooklyn, central Harlem, and portions of the central and southern Bronx, while fewer than one in five performed at grade level in English language arts in eastern and central Brooklyn, northern Manhattan, and every district in the Bronx.

1 All figures in this section refer to New York City District schools, which do not include public charter schools.
It is difficult to measure longer-term changes in school performance, as the state tests have changed dramatically in recent years. Rather than looking at changes in proficiency rates, we instead ranked each district’s performance in math and English language arts in 2000 and 2014, and compared districts’ rankings in those two years. The districts with the greatest changes in rank in each subject are listed in Table 6.1 and Table 6.2. Three districts, all in Manhattan, stand out for their improved ranks in both math and English: districts 1 (Lower East Side), 3 (Upper West Side/Morningside Heights), and 4 (East Harlem). Each of these districts moved up at least six places between 2000 and 2014 in both subjects. In addition, districts 15 (Carroll Gardens/Park Slope/Sunset Park) and 13 (Brooklyn Heights/Prospect Heights/Clinton Hill) in Brooklyn improved notably in English language arts compared to other districts in the city, while districts 9 (Concourse/Highbridge/University Heights) and 10 (Fordham/Norwood/Riverdale) in the Bronx moved up four spots in math between 2000 and 2014. District 18 (Canarsie/Remsen Village) in Brooklyn experienced the greatest relative declines in both English language arts and math rank since 2000.

2. High School Graduation Rates
A) After dropping between 2010 and 2012, the high school graduation rate rebounded between 2012 and 2014.

The share of New York City high school students who graduate on time (by the end of June of their class year, which is four years after they matriculate in ninth grade) increased by more than 10 percentage points between 2005 and 2014 (to 64.2%), as shown in Figure 6.5. Citywide graduation rates dipped slightly from the class of 2010 to the class of 2012, but more than recovered by the class of 2014.

More than three-quarters of the class of 2014 in Staten Island graduated on time, while less than 55 percent in the Bronx graduated on time. While all boroughs experienced dips in on-time graduation rate after 2010, the Bronx was the only borough not to have fully recovered by 2014, with 56.1 percent of the class of 2010 graduating on time, and only 54.7 percent of the class of 2014 graduating on time.

B) In all five boroughs, fewer students dropped out of high school, and more received Regents diplomas in 2014 compared to 2005.

Between 2005 and 2014, the citywide dropout rate (defined as the share of students who have not graduated and are also not still enrolled in school as of June 30, four years after entering ninth grade) declined by 6.5 percentage points, as Figure 6.6 illustrates. In 2012, the New York State Board of Regents implemented a policy to end issuing local (that is, non-Regents) diplomas. Accordingly, the percentage of students receiving a Regents diploma increased during that period by 25.4 percentage points, to 60.6 percent. In 2014, Staten Island continued to have the highest percentage of Regents graduates (69.6%) while the Bronx, despite gains, had the lowest (50.5%). Students in Staten Island were also most likely to graduate with a Regents diploma with advanced distinction, although that rate has not changed significantly since 2005. The share receiving Regents diplomas with advanced distinction increased by nearly three percentage points citywide since 2005 and by more than four percentage points in Queens, a larger gain than in any other borough. Students in the Bronx are notably less likely to receive an advanced Regents diploma than in any other borough, with a rate more than seven percentage points lower than for the city as a whole.

2 In addition to the implementation of the Common Core standards, in 2010 the state increased the score required to meet the level of proficiency in each subject.
Table 6.1: Districts with Greatest Increases and Decreases in Rank for Math Proficiency

<table>
<thead>
<tr>
<th>Rank of Change in Rank</th>
<th>Borough</th>
<th>District</th>
<th>Name</th>
<th>Math Rank 2000</th>
<th>Math Rank 2014</th>
<th>Change in Math Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greatest Increases</td>
<td>MN</td>
<td>1</td>
<td>Lower East Side</td>
<td>17</td>
<td>8</td>
<td>+9</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>4</td>
<td>East Harlem</td>
<td>23</td>
<td>16</td>
<td>+7</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>3</td>
<td>Upper West Side, Morningside Heights</td>
<td>12</td>
<td>6</td>
<td>+6</td>
</tr>
<tr>
<td></td>
<td>BX</td>
<td>9</td>
<td>Concourse/Highbridge/University Heights</td>
<td>31</td>
<td>27</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td>BX</td>
<td>10</td>
<td>Fordham/Norwood/Riverdale</td>
<td>25</td>
<td>21</td>
<td>+4</td>
</tr>
<tr>
<td>Greatest Decreases</td>
<td>BK</td>
<td>22</td>
<td>Flatbush/Flatlands/Sheepshead Bay</td>
<td>7</td>
<td>12</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>32</td>
<td>Bushwick</td>
<td>20</td>
<td>25</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>16</td>
<td>Stuyvesant Heights</td>
<td>26</td>
<td>31</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>31</td>
<td>Staten Island</td>
<td>6</td>
<td>13</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>18</td>
<td>Canarsie/Remsen Village</td>
<td>13</td>
<td>22</td>
<td>-9</td>
</tr>
</tbody>
</table>

Sources: New York State Department of Education, NYU Furman Center

Table 6.2: Districts with Greatest Increases and Decreases in Rank for English Language Arts (ELA) Proficiency

<table>
<thead>
<tr>
<th>Rank of Change in Rank</th>
<th>Borough</th>
<th>District</th>
<th>Name</th>
<th>ELA Rank 2000</th>
<th>ELA Rank 2014</th>
<th>Change in ELA Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greatest Increases</td>
<td>MN</td>
<td>1</td>
<td>Lower East Side</td>
<td>18</td>
<td>8</td>
<td>+10</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>3</td>
<td>Upper West Side, Morningside Heights</td>
<td>11</td>
<td>3</td>
<td>+8</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>15</td>
<td>Carroll Gardens/Park Slope/Sunset Park</td>
<td>13</td>
<td>5</td>
<td>+8</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>4</td>
<td>East Harlem</td>
<td>24</td>
<td>18</td>
<td>+6</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>13</td>
<td>Brooklyn Heights/Prospect Heights/Clinton Hill</td>
<td>21</td>
<td>16</td>
<td>+5</td>
</tr>
<tr>
<td>Greatest Decreases</td>
<td>MN</td>
<td>6</td>
<td>Washington Heights, Inwood</td>
<td>20</td>
<td>24</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>16</td>
<td>Stuyvesant Heights</td>
<td>22</td>
<td>26</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>QN</td>
<td>29</td>
<td>E. Jamaica/Hollis/Queens Village/Rosedale</td>
<td>12</td>
<td>17</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>BX</td>
<td>11</td>
<td>Parkchester/Coop City/Williamsbridge</td>
<td>15</td>
<td>21</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>18</td>
<td>Canarsie/Remsen Village</td>
<td>10</td>
<td>19</td>
<td>-9</td>
</tr>
</tbody>
</table>

Sources: New York State Department of Education, NYU Furman Center

Figure 6.5: Four-Year High School Graduation Rates (Measured in June), by Borough

Figure 6.6: High School Outcomes in June of Class Year (Four Years after Matriculation)

Note: “Other” includes students who transferred to “an approved alternative high school education preparation program” and students who received Individualized Education Plan Diplomas in years in which such diplomas were offered. (New York State phased out these diplomas in 2013.)

Sources: New York City Department of Education, NYU Furman Center
C) The likelihood of a student attending college or other postsecondary programs varies widely by neighborhood.

The New York City Department of Education calculates the postsecondary enrollment rate as the share of all students in each cohort who have both graduated high school and enrolled in a postsecondary institution—which includes two- and four-year colleges, vocational programs, and public service programs—six months after they were scheduled to graduate. Figure 6.7 shows how this rate varied across neighborhoods in 2013. In much of Manhattan, more than 80 percent of students in the class of 2013 were enrolled in a postsecondary institution by the end of 2013. In most of the Bronx and central Brooklyn, the rates were less than 50 percent.

3. Crime and Police

A) The serious crime rate in New York City declined dramatically over the past two decades but has remained steady in recent years.

Figure 6.8 shows the rate of serious felonies since 2000, broken out into serious property crimes (burglary, grand larceny, and car theft) and violent crimes (murder and non-negligent manslaughter, rape, felony assault, and robbery). The rate of serious felonies in 2014 (13.0 per 1,000 residents) was relatively unchanged from the low of 12.9 per 1,000 residents reached in 2010, which represented a drop of 10.1 crimes per 1,000 residents from 2000. Violent crime decreased significantly from 2000, when it was 7.6 per 1,000 residents, to 2009, when it reached a low of 4.6 per 1,000 residents, similar to the 2014 rate of 4.7 per 1,000 residents. The rate of serious property crimes fell to 8.1 per 1,000 residents in 2011, a decrease of 7.3 crimes per 1,000 residents from 2000, before increasing slightly to 8.4 per 1,000 residents in 2014.

B) Of the seven serious felonies, the rate of motor vehicle theft decreased the most since 2000, while the rate of grand larceny dropped the least.

Figure 6.9 illustrates the change in prevalence for each of the seven serious felonies reported by the New York City Police Department (NYPD), using an index where the rate for each crime type in 2000 is set at 100, allowing us to compare rates of change across crime types. The rate for all seven categories of crime was lower in 2014 than in 2000. Car theft showed the most dramatic declines since 2000, with rates in 2014 nearly 80 percent lower than in 2000. Burglary rates went down nearly 60 percent in that period, while murder (including non-negligent manslaughter) and robbery rates in 2014 were less than half their rates in 2000. Grand larceny, primarily comprised of the theft of property exceeding $1,000, declined the least during the first decade of the century and has increased slightly since reaching a low in 2010. The incidence of felony assault and the incidence of rape (as reported to the NYPD) have also both increased since reaching lows in 2008 and 2009 respectively.

C) Crime rates vary widely across neighborhoods.

Figure 6.10 shows the rates of serious violent felonies per 1,000 residents by borough. In 2014, the rate of serious violent crime in the Bronx was nearly three times the rate in Staten Island. Figure 6.11 shows that, even though the prevalence of serious property crimes fell dramatically in Manhattan since 2000, in 2014 it was still nearly three times as high as in Staten Island. Crime rates per 1,000 residents in Manhattan, however, are somewhat misleading. Manhattan, as a center for employment as well as leisure activities and tourism, attracts a large number of people during the day who do not live in the borough. (See sidebar for further discussion of the challenge of calculating crime rates.)
Figure 6.7: Post-Secondary Enrollment Six Months after High School Graduation by Zip Code, 2013

Note: High schools are more likely to draw students from a wider geographic area than elementary or middle schools, so we allocated each high school's rate of postsecondary enrollment according to the number of students living in each zip code who went to that high school.

Sources: New York City Department of Education, NYU Institute for Education and Social Policy, NYU Furman Center

Figure 6.8: Serious Crime Rate (per 1,000 Residents) by Major Type, New York City

Sources: New York City Police Department, U.S. Census, NYU Furman Center

Figure 6.9: Index of Crime Rates by Type of Crime, New York City (Index=100 in 2000)

Sources: New York City Police Department, U.S. Census, NYU Furman Center

Figure 6.10: Serious Violent Crime Rate (per 1,000 Residents) by Borough

Sources: New York City Police Department, U.S. Census, NYU Furman Center

Figure 6.11: Serious Property Crime Rate (per 1,000 Residents) by Borough

Sources: New York City Police Department, U.S. Census, NYU Furman Center
Daytime or Ambient Population and Alternative Definitions of Neighborhood Crime Rates

Crime rates are traditionally calculated by dividing the number of crimes by the number of residents in an area. For large geographies, using the count of residents as the denominator works well, as the count of residents reflects the overall population. For smaller geographies, however, especially those in which non-resident workers or others spend a significant portion of the day, the assumption that the resident population will include the whole set of potential victims and potential perpetrators is more problematic.

Figure 6.12 illustrates how traditional crime rates can sometimes be misleading. It shows the rate of serious property crimes per 1,000 residents in 2014, by police precinct. The colors group precincts into quintiles, and according to the map, eight of the 10 precincts in Manhattan below 59th Street are in the top quintile in terms of the rate of serious property crimes. But these rates are misleading because the daytime or ambient population of those neighborhoods, the number of people who typically spend time there over the course of a day, includes large numbers of workers, shoppers, tourists, and other visitors. (Much of the ambient population resides in New York City, and thus is included in citywide measures of the crime rate, but even such citywide measures do not account for populations of commuters, tourists, and shoppers.)

The primary reason resident population is normally used as the denominator in crime rate calculations is, of course, that such data are readily available; ambient population is much more difficult to estimate, as it changes based on many factors, including time of day, day of the week, time of year, and weather. We can, however, get closer to the true ambient population by adding the number of employees in a neighborhood to the number of residents. In order to avoid double-counting those who live and work in the same neighborhoods, we exclude employees who also reside in the same area.

Figure 6.13 shows the rate of serious property crimes per 1,000 residents and non-resident employees in 2014, colored according to quintile as in Figure 6.12. Comparing the two, the greatest differences are in lower Manhattan. When using resident population as the denominator, eight of the 10 precincts in lower Manhattan were in the top quintile; when using residents plus non-resident employees instead, only two of those precincts remain in the top quintile, while four move into the bottom quintile. The 84th precinct, covering Brooklyn Heights and Downtown Brooklyn, also goes from the top quintile to the bottom quintile.

When we examine the rate of serious violent crimes using each denominator, precincts in lower Manhattan appear to have lower rates relative to the rest of the city when including non-resident employees, although the difference is not as great as it is with property crimes.

4. Transit
A) More than 70 percent of New Yorkers commuted without a car in 2013, up from 64 percent in 2000.

Figure 6.14 illustrates the transportation modes used by commuting workers. In 2013, 27.4 percent of workers commuted by car, down from 33.9 percent in 2000. While the share of workers commuting by bicycle increased somewhat, the bulk of the increase in car-free commutes since 2000 came from the growth in the share of commuters using public transit, which rose from 32.6 percent to 59.1 percent. As Figure 6.15 shows, subway ridership increased in recent years, to nearly 5.5 million average weekday riders in 2013, while ridership on Metropolitan Transportation Authority buses decreased, suggesting that the increasing rate of public transit commuting was due to increased subway usage.

3 In order to calculate population counts for each precinct, we use block-level estimates from the decennial Census. Crime rates in 2014 thus use population data from the 2010 census, although the actual count of crimes is from 2014. For the number of non-resident jobs, we use Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES) data from 2010.
Figure 6.12: Serious Property Crime Rate (per 1,000 Residents) by Precinct, 2014

- Fewer Than 6.09
- 6.09-7.07
- 7.08-8.18
- 8.19-10.41
- More Than 10.41
- Excluded

Sources: New York City Police Department, U.S. Census, NYU Furman Center

Figure 6.13: Serious Property Crime Rate (per 1,000 Residents and Non-Resident Workers) by Precinct, 2014

- Fewer Than 4.85
- 4.85-5.70
- 5.71-6.77
- 6.78-7.83
- 7.84 or More
- Excluded

Sources: New York City Police Department, U.S. Census, NYU Furman Center

Figure 6.14: Means of Travelling to Work (Share of Workers Who Do Not Work at Home), New York City

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Transit</td>
<td>80%</td>
<td>70%</td>
</tr>
<tr>
<td>Bike</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>Walk</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td>Car</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>Car Free (Transit + Walk + Bike)</td>
<td>40%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Note: To be consistent with the way commute transportation modes are tabulated in the American Community Survey, public transit rates from the 2000 Census exclude those commuting by taxi. “Car” refers only to those using a personal motor vehicle other than a motorcycle.

Sources: U.S. Census (2000), American Community Survey (2013), NYU Furman Center

Figure 6.15: Average Weekday Ridership on Metropolitan Transportation Authority, New York City

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subway</td>
<td>5,465,034</td>
<td>5,402,263</td>
<td>5,398,042</td>
<td>5,393,821</td>
<td>5,391,600</td>
<td>5,390,379</td>
<td>5,389,158</td>
</tr>
<tr>
<td>Bus</td>
<td>2,699,392</td>
<td>2,698,012</td>
<td>2,696,632</td>
<td>2,695,252</td>
<td>2,693,872</td>
<td>2,692,492</td>
<td>2,691,112</td>
</tr>
</tbody>
</table>

Note: Bus category includes both New York City Transit bus and MTA Bus Company ridership.

Sources: Metropolitan Transportation Authority, NYU Furman Center
B) In most neighborhoods, the majority of commuters traveled to work by public transit, and that share grew across New York City.

Figure 6.16 shows, by neighborhood, the share of workers (excluding those who worked at home) who commuted via public transportation. Rates tended to be highest just outside the central business district (roughly, Manhattan south of 59th Street), in neighborhoods such as the Upper West Side in Manhattan, Astoria and Long Island City in Queens, and western and central Brooklyn. Areas without convenient subway access to Lower and Midtown Manhattan, such as eastern Queens, Flatlands/Canarsie in Brooklyn, and all of Staten Island, had much lower rates of public transit usage on average.

Still, the majority of workers in most neighborhoods used public transit to get to work; more than one third of commuters traveled to work via public transportation in all but three sub-borough areas: Tottenville/Great Kills (SI 03) and South Beach/Willowbrook (SI 02) in Staten Island, and Bayside/Little Neck (QN 11) in Queens.

Furthermore, Figure 6.17 shows that the share of commuters traveling to work via public transit increased in every neighborhood in the city between 2000 and 2011–2013. In Mott Haven/Hunts Point in the Bronx, Bushwick and East New York/Starrett City in Brooklyn, and Ridgewood/Maspeth in Queens, the share commuting by public transit increased by more than 10 percentage points between 2000 and 2011–2013.

5. Parks

A) Although a large majority of New Yorkers live close to parks, some neighborhoods lack access to parks.

Figure 6.19 illustrates the share of residential units, by borough, living within a quarter mile of a park of at least a quarter acre in size. In 2014, only 56.8 percent of residential units in Staten Island were within a quarter mile walk of a park of at least a quarter acre, the lowest share of the five boroughs. Manhattan had the highest share (89.4%) of the five boroughs, with the Bronx close behind at 84.9 percent.

Access to parks varies widely by neighborhood, as Figure 6.20 illustrates. In the 1920s, the Bronx became known as the “Borough of Parks,” and indeed 95 percent or more of residential units in neighborhoods in the South and central Bronx were within a quarter mile of a park in 2014. Access to parks at least a quarter of an acre in size in some parts of southern Brooklyn and Queens was more limited, however. In Bensonhurst (BK 11), Borough Park (BK 12), Flatbush/Midwood (BK 14), and East Flatbush (BK 17) in Brooklyn, as well as Kew Gardens/Woodhaven (QN 09), South Ozone Park/Howard Beach (QN 10), and Queens Village in Queens (QN 13), less than half of residential units were within one-quarter mile of a park a quarter acre or larger in size.

C) The share of commuters who use a bicycle to get to work grew since 2000, though it remained small and concentrated in certain neighborhoods.

In most neighborhoods, as shown in Figure 6.18, cyclists comprised less than one percent of commuters, yet in northern and western Brooklyn, and in the Lower East Side in Manhattan, cyclists represented roughly four percent of commuters. Neighborhoods with relatively high shares of bicycle commuters also tended to have a high density of designated on-street bike routes (which includes bike lanes as well as signed bike routes without designated bike lanes). Sunset Park, Borough Park, and Flatbush/Midwood in Brooklyn, and Jackson Heights and Elmhurst/Corona in Queens, have relatively high shares of commuters traveling by bicycle despite comparatively limited on-street bike routes.
Figure 6.16: Share of Commuters Traveling to Work by Public Transit by Sub-Borough Area, 2011–2013

- 50% or Less
- 50.1%-60%
- 60.1%-70%
- More Than 70%
- Subway Routes

Sources: American Community Survey, Metropolitan Transportation Authority, NYU Furman Center

Figure 6.17: Percentage Point Change in Percentage of Commuters Using Public Transit by Sub-Borough Area, 2000 to 2011–2013

- 3.0 or Fewer
- 3.1-6.5
- 6.6-10.0
- More Than 10

Sources: U.S. Census (2000), American Community Survey (2011–2013), NYU Furman Center

Figure 6.18: Share of Commuters Traveling to Work by Bike by Sub-Borough Area, 2011–2013

- 0.4% or Less
- 0.41%-1%
- 1.0%-2.5%
- More Than 2.5%
- On-Street Bike Routes

Sources: American Community Survey, New York City Department of Transportation, U.S. Census, NYU Furman Center

Figure 6.19: Share of Residential Units Within a Quarter Mile of a Park of at Least a Quarter Acre, 2014

- Less Than 50%
- 50%-64.9%
- 65%-79.9%
- 80%-94.9%
- 95% or More
- Large Parks and Airports

Sources: New York City Department of Parks and Recreation, LION, PLUTO, NYU Furman Center

Figure 6.20: Share of Residential Units within a Quarter Mile of a Park of a Quarter Acre or More, 2014

- 84.9%
- 69.2%
- 89.4%
- 60.8%
- 56.8%
- 74.5%

Sources: New York City Department of Parks and Recreation; New York State Office of Parks, Recreation, and Historic Preservation; LION; PLUTO; NYU Furman Center